
Introducing Poseidon

Decoding the Poseidon Congestion Control Protocol:
A Security Assessment

Steven Seiden, Weitao Wang, T. S. Eugene Ng

Examining ThreatsThe Network Congestion Problem
• Today, data centers need to rapidly serve immense amounts

of data
• To deal with the high traffic flow, congestion control protocols

have been implemented within networks to regulate sender
traffic
• These protocols help prevent packet loss by limiting the

bandwidth senders are allotted
• Traditionally, achieving network fairness, thus allocating

senders the proper throughput, can be slow

Resolving Issues

What Was Learned

• Our threat model examines two attacks against the
availability of the network; switch-based attacks and sender-
based attacks

• Poseidon, a distributed congestion control protocol, aims to
improve network fairness by:
• Embedding network congestion information into

packets’ headers
• Relying on senders to adjust their sending rate based on

received information

All work based on Poseidon: Wang, W., Moshref, M., Li, Y., Kumar, G., Ng, T. S. E., Cardwell, N., & Dukkipati, N. (2023). Poseidon: Efficient, Robust, and Practical Datacenter {CC} via Deployable {INT}. 255–274. https://www.usenix.org/conference/nsdi23/presentation/wang-weitao

Figure 2: An Overview of the Poseidon Algorithm

• Mitigating sender-based attacks is
similar to that of traditional networks

• Methods include requiring the switch to
scan for rogue senders

! Mitigating Sender-Based Attacks

! Mitigating Switch-Based Attacks
• Senders need a method to individually detect switch attacks
• Our solution: having a physical sender (nodep) introduce a

virtual sender (nodes) to test the switch’s reactions in two
ways:

Rate

3A: Control 3B: Sender Attack 3C: Switch Attack

Signal

4A: Control 4B: Sender Attack 4C: Switch Attack

• A sender attempts to take a network offline by reporting
falsified information

• Experiments revealed a sender reporting inaccurate
bandwidth allocation information impedes fairness
• Figures 3B & 4B: Attacker Flow reports to have received

50% of its allocated bandwidth, allowing it to gain extra
bandwidth, negatively affecting the other senders

! Exploring Sender-Based Attacks

! Exploring Switch-Based Attacks
• A rogue switch manipulates the bandwidth given to senders

by reporting different queue lengths to different senders
• Experiments revealed manipulating packet headers to report

different queue lengths can skew bandwidth allocation
• Figures 3C & 4C: Packets sent to the Attacked Flow state

the queue length is half the actual size, reducing the
Attacked Flow’s rate and increasing all other flows’ rates

Figure 3: Measurements of all Flows’ Sending Rates - Several Experiments

Figure 4: Measurements of Network Signal - Several Experiments

!"
!

!

INCREASE
SENDING RATE
———————
———————
———————

!
!!"

SENDER

!!"!

Comparing nodep’s and nodes’s sending rates when sending
simultaneously with similar configurations to determine if the

switch is discriminating against specific senders

Comparing nodep’s sending rate before and after introducing
nodes to test if the switch reacts to changes properly

#p!

Get sending
rate of nodep

#s"

Introduce nodes

#p!
Examine how

the switch
adjusts nodep’s

rate

Determine if
the rate

adjustment is
reasonable

#p#

Introduce nodes with
the same configuration

as nodep

#p!
Determine if nodes is
being discriminated
against compared to

nodep

#p##s"
Compare the sending
rate of nodes with that

of nodep

#s!+

• Both methods have been implemented in Python and allow
any sender to detect switch attacks under various conditions

• Distribution of congestion control can drastically improve
network performance, but can lead to new security threats

• Employing sender and switch security protocols can help
ensure network availability

"
"
"

$

$

$

!
$ $ $

$

%

! FULL

%

Figure 1: Packet From a Sender Being Dropped by an Overflowing Switch

• The distribution of congestion control creates new security
threats explored in this project

https://www.usenix.org/conference/nsdi23/presentation/wang-weitao

